Speckle variance OCT imaging of the vasculature in live mammalian embryos

نویسنده

  • N. Sudheendran
چکیده

Live imaging of normal and abnormal vascular development in mammalian embryos is important tool in embryonic research, which can potentially contribute to understanding, prevention and treatment of cardiovascular birth defects. Here, we used speckle variance analysis of swept source optical coherence tomography (OCT) data sets acquired from live mouse embryos to reconstruct the 3-D structure of the embryonic vasculature. Both Doppler OCT and speckle variance algorithms were used to reconstruct the vascular structure. The results demonstrates that speckle variance imaging provides more accurate representation of the vascular structure, as it is not sensitive to the blood flow direction, while the Doppler OCT imaging misses blood flow component perpendicular to the beam direction. These studies suggest that speckle variance imaging is a promising tool to study vascular development in cultured mouse embryos. 500 μm Speckle variance reconstruction showing the yolk sac vasculature c © 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA Speckle variance OCT imaging of the vasculature in live

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data.

BACKGROUND Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibil...

متن کامل

Review of speckle and phase variance optical coherence tomography to visualize microvascular networks.

High-resolution mapping of microvasculature has been applied to diverse body systems, including the retinal and choroidal vasculature, cardiac vasculature, the central nervous system, and various tumor models. Many imaging techniques have been developed to address specific research questions, and each has its own merits and drawbacks. Understanding, optimization, and proper implementation of th...

متن کامل

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research.

The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011